# Statistical foundations of machine learning

## Primary tabs

A printed copy of this book is not yet available.

## Table of contents

## Recently updated pages

The matrix inversion formula -
14 Mar 2016

The PRESS statistic -
29 Oct 2015

Permutation test -
23 Feb 2014

Randomization tests -
23 Feb 2014

The bootstrap principle -
23 Feb 2014

Bootstrap estimate of bias -
23 Feb 2014

Bootstrap sampling -
23 Feb 2014

Bootstrap -
23 Feb 2014

Estimation of arbitrary statistics -
23 Feb 2014

Nonparametric methods -
23 Feb 2014

## Statistics : Total views

Statistical foundations of machine learning - 18,282 | Bivariate normal distribution - 5,432 |

Bias/variance decomposition of MSE - 8,952 | Bias and variance of $\hat \mu$ - 5,320 |

The sum of i.i.d. random variables - 8,756 | Plug-in principle to define an estimator - 4,685 |

Axiomatic definition of probability - 8,698 | Bias of the estimator $\hat \sigma^2$ - 4,662 |

USPS dataset - 7,741 | Foundations of probability - 4,643 |

Recursive least-squares - 6,890 | Permutation test - 4,352 |

Introduction - 6,386 | Stastistical machine learning - 4,237 |

Modelling from data - 6,209 | The PRESS statistic - 4,228 |

Bootstrap estimate of the variance - 5,960 | Bias and variance - 4,191 |

Bootstrap estimate of bias - 5,556 | Stacked regression - 4,033 |

Copyright © 2016, OTexts. About - Contact - Help - Twitter - Terms of Service - Privacy Policy